Jak to funguje

Jak funguje automatika startu elektrocentrál

Naše firma Krel Central LTD vyrábí a dodává certifikované zařízení (ATS panely) pro automatizované zajištění záložní dodávky energie pro firmy i pro rodinné domy. Rozhodující předností benzínových elektrocentrál je elektronicky ovládaný servopohon sytiče, který zajišťuje nadstandartní spolehlivost startu ve srovnání proti běžným systémům.

Běžná situace

Za normální situace distributor dodává elektřinu přes automatický přepínač do odběrného místa – firmy nebo domácnosti, elektrocentála je zastavena a odpojena. 

schema-on

Mimořádná situace

V případě výpadku dodávky elektřiny elektronický přepínač automaticky nastartuje elektrocentrálu a přepojí zálohované odběrné místo na její generátor. 

 schema-off

Přepínač zajistí, aby se energie z elektrocentrály nedostávala zpět do elektrorozvodné sítě a nemohlo dojít např. k úrazu elektrickým proudem zaměstnance rozvodných závodů, který by pracoval na odstranění závady.Po návratu veřejné sítě se automaticky přepne zálohovaný vývod zpět a elektrocentrálu zastaví. 

 

Jak funguje solární elektrárna

fotovoltaické elektrárny využívají k přeměně slunečního záření na elektřinu fotovoltaický jev.Fotovoltaický panel se skládá z jednotlivých fotovoltaických článků, jejichž základem je polovodičová dioda. Ta obsahuje dvě vrstvy příměsových polovodičů – polovodiče typu P – anoda a polovodiče typu N – katoda.

Vrstva typu N obsahuje přebytek elektronů, ve vrstvě P je jich naopak nedostatek resp. vrstva obsahuje přebytek kladně nabitých „děr.“ Rozhraní těchto polovodičů se nazývá P-N přechod, který ideálně propouští proud pouze jedním směrem. Díky potenciálové bariéře zabraňuje volnému přechodu elektronů v závěrném směru, tedy z vrstvy N s jejich přebytkem do vrstvy P s nedostatkem elektronů. Není tedy možné, aby došlo ke spojení elektronů s dírami neboli k jejich rekombinaci. Umožňuje ovšem přechod elektronů v opačném – propustném směru.

Dopadem fotonů slunečního záření na fotočlánek vzniká vnitřní fotoelektrický jev, při němž jsou z krystalové mřížky obou vrstev uvolňovány elektrony, které se díky výše zmíněné vlastnosti hromadí ve vrstvě N a mezi oběma vrstvami vzniká elektrické napětí o hodnotě 0,5-0,6 V. Navýšení na požadované napětí se získá sériovým zapojením jednotlivých článků, paralelním kombinací lze dosáhnout vyššího proudu. V praxi se pro dosažení požadovaných hodnot využívá sério-paralelního zapojení.

schema-zapojeni-fotovoltaicke-elektrarny-573x306

Aby mohl být elektron z krystalové mřížky uvolněn, musí mít dopadající foton minimální energii potřebnou pro překonání zakázaného pásu, u křemíku je tato hranice 1,12 eV. Energie fotonů závisí na vlnové délce záření, energii 1,12 eV odpovídá infračervenému záření o vlnové délce zhruba 1 105 nm. Záření o kratší vlnové délce mají dostatek energie, dopadající fotony způsobí vznik elektronu a „díry,“ zbylá energie se přemění na nežádoucí teplo. Naopak fotony záření s větší vlnovou délkou křemíkem prochází a nejsou v něm absorbovány. Teoreticky lze využít energie maximálně 50 % dopadajícího světelného záření, prakticky se ovšem dosahuje hodnot polovičních.

Materiál fotovoltaických článků

Nejvíce využívaným materiálem pro výrobu fotovoltaických článků je v současné době křemík. V elektrotechnice má tento prvek rozsáhlé využití, díky čemuž má rozsáhlou technologickou základnu. V přírodě se nachází v čistotě 97-99 %, což není pro využité v elektrotechnice dostatečné. Čistší křemík je nutné vyrobit. V případě fotovoltaických článků se využívá jak polykrystalický, tak i monokrystalický křemík.

Polykrystalický křemík se vyrábí za pomocí chemických metod – např. Siemensovy metody. Oproti monokrystalickému křemíku je výroba méně nákladná a články dosahují vyšší účinnosti při nižší intenzitě záření, účinnost těchto článků se pohybuje okolo 15-17 %.

Monokrystalický křemík se vyrábí za pomocí řízené krystalizace z taveniny tzv. Czochralského metodou. Výhodou monokrystalického křemíku oproti polykrystalickému je vyšší účinnost při vyšších intenzitách záření, nejvyšší účinnost tohoto typu článků přesahuje 20 %.

Druhým nejvyužívanějším materiálem je arsenid galia. Výhodou je vyšší účinnost než u křemíkových článků, prozatím nejvyšší účinnost tohoto typu článku se pohybuje okolo 29 %. Nevýhodou je vyšší cena, větší hustota a křehkost článků. Díky vyšší účinnosti a odolnosti proti kosmickému záření se tyto články využívají především ve vesmírných družicích.

Nejvyšší dosažené laboratorní účinnosti fotovoltaických článků. Zdroj: National Renewable Energy Laboratory (NREL)
Nejvyšší dosažené laboratorní účinnosti fotovoltaických článků. Zdroj: National Renewable Energy Laboratory (NREL)

Konstrukce fotovoltaických článků

Při konstrukci fotovoltaických článku je prioritou úspora materiálu a omezení optických a elektrických ztrát. Optické ztráty jsou způsobeny především odrazem záření, které u křemíku přesahuje hodnotu 30 %. K eliminaci tohoto jevu se využívají speciální antireflexní vrstvy, které jsou schopny odrazivost snížit až pod 10 %. Další možností je vytvoření texturovaného povrchu článku za pomocí selektivního leptadla.

Součásti fotovoltaické elektrárny

  • Fotovoltaické panely
  • Regulátor resp. MTTP měnič
  • Střídač
  • Propojovací vodiče
  • Ochranné prvky
  • Elektrocentrála – záložní zdroj a baterie (ostrovní provoz)
  • Transformátor (připojení do přenosové soustavy)

Fotovoltaické panely

Fotovoltaické články jsou sério-paralelně zapojeny a jako celek tvoří panel. Fotovoltaická elektrárna je poté tvořena sério-paralelní kombinací panelů. Výkon panelů je udáván v jednotkách Watt peak (Wp). Jedná se o maximální (peak) hodnotu výkonu za ideálních podmínek – nestíněné světelné záření směřující kolmo na panel, ideální teplota, panel bez nečistot. Při polojasnu klesá výkon přibližně na 35 %, při zatažené obloze na 10 % udávaného maximálního výkonu. Běžné nominální napětí panelů je 12, nebo 24 V, méně často 48 V.

Panely jsou běžně vybaveny ochranným hliníkovým nebo duralovým rámem a kryty speciálním tvrzeným sklem, které panel chrání před povětrnostními podmínkami. Mezi samotnými články a tvrzeným sklem se dále nachází další vrstva, která chrání články před mechanickým poškozením, může se jednat například světlopropustný gel Ethylen-vinyl acetát (EVA). Ze zadní strany jsou panely chráněny dalším materiálem, například laminátovou deskou. Životnost panelů je u většiny výrobců udávána na 25 let se zárukou, že účinnost po 10 letech neklesne pod 90 % a po 25 letech pod 80 %.

Regulátor resp. MTTP měnič

Jelikož s kolísající výrobou fotovoltaických elektráren kolísá i napětí na výstupu je nutné toto napětí regulovat. K tomu slouží solární regulátor. Klasické regulátory mají účinnost okolo 80 %. Další možností je využití moderních typů regulátorů s vestavěným DC/DC měničem označované jako MTTP měniče. Jejich účinnost se pohybuje mezi 95-98 %. Ve srovnání s klasickými regulátory jsou ovšem několiknásobně dražší.

Střídač

Měnič napětí neboli střídač slouží k přeměně stejnosměrného napětí na střídavé.

Ochranné prvky

Především u větších systému se využívají jističe, které sloužící jako ochrana proti zkratu, a napěťové svodiče pro ochranu elektrárny před přepětím – např. úder blesku.